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SUMMARY 

An experimental investigation was conducted t o  determine the a b i l i t y  

of various s p l i t t e r  p l a t e s  t o  i so l a t e  twin i n l e t s  aerodynamically such 

t h a t  i n  the  event t h a t  one i n l e t  i s  unstarted, the operation of t he  other 

i n l e t  w i l l  not be affected.  The e f fec ts  of pylon height, i n l e t  mass flow, 

and i n l e t  yaw, on the  performance of s p l i t t e r  p la tes  were investigated.  

A pylon mounted external-internal compression i n l e t  model was used and 

the tests were made a t  a Mach number of 2.3 and a Reynolds number based 

on cowl diameter of 10.8 x lo6 (approximately ful l -scale  f l ight condi- 

t i o n s  f o r  an a i r c r a f t  such as a supersonic t ranspor t ) .  

t h a t  s p l i t t e r  p l a t e s  of a prac t ica l  size w i l l  i so l a t e  an unstarted i n l e t  

a t  l e a s t  as long as the  mass-flow ratio i s  maintained above approxi- 

It was determined 

mately 0.65. P 



NOTATION 

1 lrD2 - -, 9.82 in2 (63.35 cm2) i n l e t  capture area, 
A i  2 4  

At 
D 

i n l e t  throat  area, 5.10 in2 (32.9 cm2) 

cowl diameter, 5 in .  (12.7 cm) 

mass-flow r a t e  through stream tube of area A i  a t  conditions 19 
behind sp l i t t e r -p la te  shock 

i 2  measured i n l e t  mass-flow ra te  

t o t a l  pressure p t  

R Reynolds number 

If angle of yaw, degrees 

Subscripts: 

2 conditions a t  the  d i f fuser  ex i t  

m conditions i n  f r e e  stream 

6 based on boundary-layer t o t a l  thickness 



AN INVESTIGATION OF S P L I m  PLATES FOR 

SUPERSONIC T W I N  1NI;ETS 

By John B. Peterson, Jr.* 

1. INTRODUCTION 

The locat ion and design of the  propulsion system i s  important t o  the  

performance and safety of an a i r c r a f t  such as a supersonic t ransport .  A 

number of investigations ( r e f .  1 and other proprietary investigations) 

have been conducted t o  determine the e f fec ts  of various arrangements of 

the  propulsion packages r e l a t ive  t o  one another. 

f a c t  t h a t  uns t a r t s  of mixed compression i n l e t s  cannot presently be com- 

p l e t e ly  eliminated, and t h a t  the  unstar t  of one i n l e t  must not i n i t i a t e  

the  uns ta r t  of an adjacent one, since the two unstarted adjacent i n l e t s  

would p rec ip i t a t e  extreme ro l l i ng  and yawing moments. 

Problems a r i s e  from t h e  

One type of engine pod which has been proposed i s  the twin i n l e t  

Examples of t h i s  arrangement a re  shown i n  f igures  1 design ( r e f .  2 ) .  

and 2. 

and attempts t o  insure independent operation by employing a s p l i t t e r  p la te  

which divides  t h e  nacelle and extends forward, i so l a t ing  the two i n l e t s .  

T h i s  arrangement places two propulsion packages i n  a single nacelle 

There are a number of advantages t o  th is  twin-inlet configuration. 

F i r s t ,  t h e  t o t a l  wetted area of a l l  the  nacelles i s  reduced with corre- 

sponding reductions i n  skin-friction drag. Secondly, important benef i t s  a r e  

obtained from t h e  s p l i t t e r  p la te  which i s  used as a compression surface t o  

decrease i n l e t  s ize ,  increase i n l e t  pressure recovery, and reduce flow dis -  

t o r t i o n s  caused by yaw. 

the  engines more nearly on the centerline of the  a i r c r a f t  which i s  

I n  addition, this arrangement allows placement of 

* Aerospace Engineer, NASA Langley Research Center, Langley Station, 

Hampton, Va. 
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desirable f o r  s t ruc tura l  and aerodynamic reasons ( f o r  example, reduction 

i n  the  asymmetric thrust and reduction i n  r o l l  moment of i n e r t i a ) .  

These considerations make the  twin-inlet  arrangement a highly favor- 

able  design. 

a b i l i t y  of t he  s p l i t t e r  p l a t e  t o  i s o l a t e  the two i n l e t s  aerodynamically 

such that i n  the  case of an uns ta r t  of one i n l e t ,  the  other i n l e t  would 

be unaffected. T h i s  s p l i t t e r  p l a t e  must be of a p rac t i ca l  s ize  such that 

the drag and weight do not override the  advantages of the arrangement. 

However, the f e a s i b i l i t y  of the design hinges upon the 

An investigation was conducted i n  the NASA Langley 20-inch variable 

supersonic tunnel t o  determine the  a b i l i t y  of s p l i t t e r  p l a t e s  of p rac t i ca l  

s i z e  t o  i so l a t e  aerodynamically an unstarted twin-inlet model. The inves- 

t i ga t ion  was carr ied out a t  a Mach number of 2.5 and a Reynolds number 

based on cowl diameter of 10.8 x lo6, which a re  very near fu l l - sca le  f l i g h t  

conditions under the wing of proposed supersonic t ransports  f ly ing  a t  

65,000 f e e t  (19,812 meters) with a 6.5-foot (1.98 meter) cowl diameter. 

The ef fec ts  of pylon height, yaw, and i n l e t  mass flow on sp l i t t e r -p l a t e  

performance were investigated. 

2. AJ?PARA!rUS 

2.1. Model 

The bas ic  model consisted of a semicircular i n l e t  which simulated 

one-half of a twin-inlet configuration which was pylon mounted t o  a p l a t e  

simulating the  wing. Photographs and drawings of the  model a re  presented 

i n  f igures  3 and 4. 

f l i g h t  configuration f o r  convenience i n  handling. The p l a t e  simulating 

the wing was pa ra l l e l  t o  t he  free stream; thus,  the  model has no wing com- 

pression. Pressure probes were used i n  place of a second twin i n l e t  and 

w i l l  be discussed l a t e r .  

2 

The i n l e t  was mounted upside down from the ac tua l  
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*The center body of the semicircular external-internal compression 

i n l e t  was fixed a t  the design Mach number posit ion and the in te rna l  con- 

t rac t ion  prohibited the i n l e t  from star t ing throughout the investigation. 

While t h i s  did not allow examination of the e f f ec t s  of the i n i t i a l  unstar t  

pulse which r e su l t s  when an external-internal compression i n l e t  unstarts,  

the  magnitude of t h i s  i n i t i a l  pulse i s  only s l igh t ly  greater than the 

pulses of t he  unstarted i n l e t  flow f i e ld  which follows (unpublished 

industry data and ref. 1). Some de ta i l  t a i lo r ing  of the  successful 

s p l i t t e r  plates ,  however, may be necessary t o  i so la te  the  f irst  unstart  

shock. 

The half-cone center body has a l2.5O half-angle; the i n l e t  in te rna l  

and external  cowl l i p  angles a t  0' and 5', respectively; and the  i n l e t  

contraction r a t i o  A+/% i s  0.52. A l l  s p l i t t e r  p la tes  provided 2.5' of 

compression which reduced the  loca l  Mach number t o  2.4 and the center 

body shock was directed toward the  cowl l i p  a t  this design Mach number. 

Three pylon heights were investigated. The pylons positioned the cowl 

l i p  0.5, 0.25, and 0.10 of the  i n l e t  diameter D above the  wing p la te  

and were designated high, medium, and low pylons, respectively. Photo- 

graphs, composite sketches, and dimensional drawings of the various 

s p l i t t e r  p la tes  investigated a re  shown i n  f igures  5, 6, and 7. 

The fixed-wing p la te  was used t o  simulate the undersurface of the 

wing. 

unstarted i n l e t  might in te rac t  w i t h  the wing boundary layer  and thereby 

allow disturbances t o  reach the opposite i n l e t .  

length i s  dependent upon Reynolds number based on boundary-layer thick- 

ness Rg 

thickness by the use of dis t r ibuted roughness on the wing p l a t e .  

Number 120 carbowdun was dis t r ibuted over the  first 15 inches (38.1 cm). 

It was necessary t o  simulate the wing because the shocks from the 

Since the interact ion 

(ref. 3 ) ,  it was decided t o  obtain the proper boundary-layer 
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This allowed 4 t o  5 inches (approximately 10 t o  13 cm) on the surface of 

the plate, a f t e r  the dis t r ibuted roughness region, f o r  the boundary layer  

t o  recover i t s  normal shape before encountering any shocks. 

2.2. Instrumentation 

Pi tot  tubes were used i n  place of a second i n l e t  t o  indicate i f  dis-  

turbances reached the other side of the s p l i t t e r  plate .  This was done t o  

reduce the complexity of the model. Also, since the tunnel-blockage area 

was reduced by elimination of the second in l e t ,  a larger  model could be 

used and ful l -scale  Reynolds numbers were obtainable. 

tubes were located a t  posit ions which would correspond t o  the  two points 

where the cowl l i p  of a second twin i n l e t  would join the s p l i t t e r  and a t  

the  midpoint between these two. A record of the p i t o t  pressures was 

taken continuously during each run on a d i rec t  readout oscillograph. 

The three p i t o t  

2.3.  Flow Visualization 

In order t o  aid i n  the evaluation of the effectiveness of the 

s p l i t t e r  plates ,  both schlieren and shadowgraph movies were obtained. 

The schlierens picture a l l  the flow except that which was blocked from 

view by the  s p l i t t e r  plates .  

A unique shadowgraph method was used t o  obtain movies of the flow 

This method consisted of f i e l d  on the s p l i t t e r  plates.  

ref lect ing pa ra l l e l  light off the s p l i t t e r  plates ,  passing the ref lected 

l i g h t  through an achromatic convex lens,  and focusing the  l i gh t  i n to  a 

16-IUIII Fastex camera operating a t  2000 frames per second. Flow separa- 

t i ons  and shocks on the s p l i t t e r  p la tes  may be seen c lear ly  on the  

shadowgraphs since light rays a re  deflected by these disturbances. 

edges o f  the shadowgraphs were of poor qual i ty  because the  s p l i t t e r -  

p l a t e  edges were rounded s l igh t ly  i n  the  polishing process. 

4 
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2.4. Tests 

Tests were conducted with an open-diffuser exit and with reduced 

mass flow. I n  both cases, t h e  mass flow w a s  measured by nozzles i n  the 

d i f fuser  ex i t .  With the  diffuser  ex i t  open, a complete se r i e s  of tests 

was conducted a t  various pylon heights and angles of yaw. Open-exit 

condition tests were considered the most s ign i f icant  f o r  the following 

reasons. There are numerous causes of i n l e t  uns t a r t s  and the  mass flow 

through an unstarted i n l e t  normally depends on exact ly  what type of 

uns ta r t  has occurred. However, fu ture  supersonic i n l e t s  should incorpo- 

r a t e  subsonic bypass doors which, although possibly unable t o  completely 

eliminate i n l e t  uns ta r t s ,  w i l l  react  very rapidly. These bypass doors 

w i l l  pass any excess mass flow entering the unstarted i n l e t  which can- 

not pass through the  engine, as may be the  case i n  cer ta in  types of 

uns ta r t s .  Thus, the unstarted i n l e t  mass-flow r a t i o  w i l l  depend only on 

how much in te rna l  contraction the i n l e t  has and the r e s u l t s  with the 

d i f fuser  e x i t  open may be considered t o  accurately simulate a c t u a l u n s t a r t  

conditions. A l imited number of reduced mass-flow tests were conducted 

which serve t o  indicate  the  performance of the s p l i t t e r  p l a t e s  i n  the 

event t h a t  the subsonic bypass doors f a i l  t o  open o r  do not react  rapidly 

enough t o  prevent reduced mass flows i n  the  unstarted i n l e t .  

3. DISCUSSION 

3.1. I n l e t  Flow Field f o r  the Open-Diffuser Exit  Case 

A schematic drawing of the  unstarted i n l e t  flow f i e l d  i s  shown i n  

f igure 9, which i s  representative of the flow f i e l d  on the  s p l i t t e r  p la te ,  

regardless of t he  shape of the  s p l i t t e r  plate ,  pylon height, o r  angle of 

yaw. The flow f i e l d  of t he  unstarted i n l e t  was steady, indicat ing t h a t  

this pa r t i cu la r  i n l e t  had some degree of subc r i t i ca l  s t a b i l i t y .  This 

bas i c  i n l e t  flow f i e l d  consisted of a cone separation with the  accom- 

panying separation shock followed by a normal shock i n  f ront  of t he  i n l e t  

5 



cowl. There are  a l so  two "ridge" l ines .  

boundary-layer flow has been deflected outward away f romthe  cone, i s  a 

phenomena of the glancing interact ion of a shock wave with a turbulent 

boundary layer and i s  caused by upstream pressure influences of the sep- 

aration shock. See references 4 and 5 f o r  a discussion of ridge l ines .  

Figure 10 is  a composite photograph made up of a schlieren showing a l l  

the f l o w  except t h a t  blocked from view by the s p l i t t e r  p l a t e  and a 

shadowgraph picturing the  flow on the s p l i t t e r  plate.  

outline of the  model has been marked. 

flow f i e ld  about the complete model and various disturbances a re  pointed 

out i n  t he  figure.  The shocks reflected from the tunnel f loor  were 

shocks from supporting s t r u t s  and the wing leading edge. 

shocks affected the p i t o t  pressures a t  any t i m e .  

The ridge l ine ,  where the, p la te  

For c la r i ty ,  the  

This photograph shows a typ ica l  

None of these 

3.2. Split ter-Plate Effectiveness f o r  the 

Open-Diffuser Exit Case 

Resul t s  with the high pylon are  presented f i r s t .  Figures 10 and 

l l ( a ) ,  (b), and (c)  show the i n l e t  flow f i e l d s  fo r  s p l i t t e r  p la tes  1, 

2, 3, and 4, respectively, and the corresponding pressure t races  are  pre- 

sented i n  figure 12(a),  (b) ,  ( c ) ,  and (a) .  
2, and 3 first,  it i s  seen tha t  the flow fields are  a l l  very similar and 

that the pressure t races  f o r  these p la tes  are a l l  steady. 

three plates  are effect ive i n  i so la t ing  the unstarted i n l e t  a t  t he  high 

pylon height even though p la tes  2 and 3 a re  somewhat smaller than 

s p l i t t e r  p la te  1. These tests indicate  that it i s  not necessary f o r  a 

successful s p l i t t e r  p l a t e  t o  extend beyond the  t i p  of the  conical center 

body. 

Considering s p l i t t e r  p la tes  1, 

Thus, a l l  

When s p l i t t e r  p la te  4 was used with the high pylon, the  results 

shown in  f igure 12(d) indicate that the i n l e t  flow f i e l d  was not isolated.  

6 



_ _ _ ~  

Although the flow f i e l d  of the unstarted i n l e t  ( f ig .  11( c) ) appears the 

same a s  i n  the previous photographs for p la tes  1, 2, and 3 ,  the upper and 

lower p i to t  pressure probes were being disturbed. The pressure relieving 

e f f ec t s  a t  the edges of the s p l i t t e r  plates  tend t o  allow disturbances t o  

flow around the edges of the  p la te  and evidently the disturbances nego- 

t i a t e d  the turn  on s p l i t t e r  p l a t e  4 and reached the p i t o t  pressure probes 

because the upper and lower edges of plate 4 did not extend past the cowl 

l i p .  

been shown that s p l i t t e r  p la te  3 with i ts  7.3-percent inlet-cowl diameter 

extensions i s  successful i n  preventingthe unstarted flow f i e l d  from 

sp i l l i ng  around the upper and lower edges. The results f o r  s p l i t t e r  

p la tes  1, 2, and 3 a t  the medium pylon height of O.25D were the  same a s  

a t  the high pylon heights. 

It is  apparent t h a t  some extension is  necessary and it has already 

The three p la tes  were next tes ted a t  the low pylon height of 0.1D. 

I n  t h i s  case, s p l i t t e r  p la tes  1 and 2 were again successful i n  i so la t ing  

the unstarted i n l e t  flow f i e ld .  It i s  s ignif icant  that both of these 

p la tes  have lower edges which l i e  on the surface of the  wing. 

p la te  3 ,  however, leaves a gap of 0.125 inch (0.32 cm) between the lower 

edge of the s p l i t t e r  p l a t e  and the  surface of the  wing p la te  a t  the low 

pylon height. A composite schlieren photograph of the flow on s p l i t t e r  

p l a t e  3 i s  shown i n  figure 13 and the  accompanying p i t o t  pressure t races  

a re  shown i n  figure 14. 

pressure probe i n  figure 14 indicate that s p l i t t e r  p la te  3 was ineffec- 

t ive a t  t h i s  pylon height. Evidentlythe flow f i e l d  wing boundary-layer 

interact ion propagated through the gap t o  dis turb the lower probe, thus, 

i n  order t o  i so l a t e  twin i n l e t s  a t  low pylon heights, it i s  necessary t o  

have the s p l i t t e r  p la te  and wing connect. 

uration such an arrangement would be desirable a l so  f o r  s t ruc tura l  

reasons. 

Sp l i t t e r  

The pressure disturbances shown on the  lower 

I n  an actual prac t ica l  config- 

7 
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Spl i t te r  p la tes  1, 2, and 3 were also tes ted a t  a l l  three pylon 

heights a t  an angle of yaw of 6 O  w i t h  t h e  unstarted i n l e t  windward. 

Although adverse e f fec ts  might have been expected, i n  no case was the 

a b i l i t y  of the s p l i t t e r  p la tes  t o  i so la te  the unstarted i n l e t  a l tered by 

6' of yaw. 

3 .3 .  Spli t ter-Plate  Effectiveness fo r  the  

Reduced Mass-Flow Case 

A limited number of t e s t s  were conducted i n  which the mass-flow 

r a t i o  was reduced below 0.72 (open-exit condition) . Photographs of the 

general sequence of events when s p l i t t e r  p la te  1 w a s  tes ted a t  reduced 

mass flows i s  shown i n  f igures  15 and 16. The numbers on the figures 

correspond t o  frame numbers of the movies. A s  the  mass flow was reduced 

below 0.72, buzz of high frequency began a t  a value of %/&,. of 

about 0.65. With further mass-flow reduction, the buzz changed t o  a 

lower frequency osc i l la t ion  of larger  amplitude and the high frequency 

mode was superimposed on t h i s  osc i l la t ion .  The buzz became more severe 

as the mass flow w a s  reduced s t i l l  further.  

( i . e . ,  became ineffective) a t  

sures were disturbed. 

When p la te  1 f i r s t  f a i l ed  

= 0.57, the upper and lower p i t o t  pres- 

With lower mass flows, the probe disturbances were 

f i l  

more severe and a t  zero mass flow a l l  three probes were disturbed. The 

i n l e t  buzz was so strong a t  zero mass flow tha t  even the  largest  s p l i t t e r  

p la te ,  number 5,  was unable t o  i so l a t e  any of the probes from disturbances. 

It was found tha t  this general sequence of events occurred with 

reduced mass flow f o r  s p l i t t e r  p la tes  1 and 3 a t  a l l  pylon heights and 

f o r  angles of y a w  of 0' and 6'. 

Figure 17(a) presents the performance of s p l i t t e r  p la tes  1 and 3 for  

various mass flows and 

8 
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inef fec t ive  are denoted by flagged symbols. From t h i s  f igure it i s  seen 

t h a t  p la tes  1 and 3 a re  successful i n  i so la t ing  the  unstarted i n l e t  down 

t o  a mass-flow r a t i o  of about 0.65 but f a i l  when the  r a t i o  i s  reduced t o  

about 0.57. Plate  3 is ,  of course, never successful a t  t h e  low pylon 

height because of the gap between the s p l i t t e r  p l a t e  and the  wing surface. 

The performance and i n l e t  flow-field charac te r i s t ics  of s p l i t t e r  

p l a t e  2 a t  

p l a t e  1 down t o  a mass-flow r a t i o  of 0.64. 

reduced t o  0.57 ( the mass-flow r a t i o  a t  which s p l i t t e r  p l a t e  1 fa i l ed )  

p l a t e  2 became ineffect ive a t  the  medium pylon height where the  lower 

p i t o t  tube was disturbed but was s t i l l  effect ive a t  the  h i g h  and low 

pylon heights. When an attempt was made t o  reduce the mass flow fur ther ,  

the  flow completely changed character to  a steady separated condition and 

the  mass flow dropped t o  0.27. 

graphs i n  f igure l7(b) .  Since separation occurred a t  one of the  corners 

on t h e  f ront  of the p la te ,  it appears that the  separation may have been 

induced by s l igh t  pressure gradients caused by the conical flow f i e l d  

t h a t  t he  corners generate, 

between a mass-flow r a t i o  of 0.57 and 0.27 cannot be determined because 

mass flows i n  t h i s  range were unobtainable, but  a t  best, any success was 

marginal inasmuch as ineffectiveness of t he  p l a t e  was already indicated 

f o r  the medium pylon height a t  a mass-flow r a t i o  of 0.57. 

$ = 0' shown i n  f igure l7(b) were the  same a s  f o r  s p l i t t e r  

As the mass flow was fur ther  

This condition i s  shown by the  shadow- 

The question of whether p l a t e  2 was successful 

Some reduced mass-flow tests were a l so  conducted a t  # = 6' and 

results are shown i n  f igure 18. 

mass-flow r a t i o  of about 0.55, but plate 3 was only successful f o r  the 

open-exit condition a t  a mass-flow ra t io  of 0.62. 

somewhat earlier than p l a t e s  1 and 2 because i t s  upper and lower edges 

extend only 7.5-percent cowl diameters as compared t o  10-percent cowl 

diameters f o r  p l a t e s  1 and 2. 

Plates 1 and 2 were successful down t o  a 

P la te  3 probably f a i l s  

9 



The most important conclusion t o  be drawn from the t e s t  w i t h  reduced 

mass flow i s  that reasonably sized s p l i t t e r  p l a t e s  w i l l  continue t o  iso- 

l a te  an unstarted i n l e t  a t  l e a s t  down t o  a mass-flow r a t i o  of approxi- 

mately 0.65. 

4. CONCLUSIONS 

An investigation w a s  made a t  a Mach number of 2.5 and a Reynolds 

number based on cowl diameter of 10.8 x 10 6 (approximately fu l l - sca le  

flight conditions f o r  a supersonic t ransport)  t o  determine the a b i l i t y  

of various s p l i t t e r  p la tes  t o  i so l a t e  an unstarted twin i n l e t .  

investigation led  t o  the following conclusions: 

The 

1. S p l i t t e r  p l a t e s  of p rac t i ca l  s i ze  can i s o l a t e  the unstarted 

twin in l e t  a s  long a s  the mass-flow r a t i o  i s  maintained above approxi- 

mately 0.65. 

2. It i s  necessary f o r  the upper and lower edges of successful 

s p l i t t e r  p l a t e s  t o  extend above and belaw the cowl l i p .  

of 7.5 percent of the cowl diameter was successful.) 

sary, however, f o r  t he  s p l i t t e r  p l a t e  t o  extend beyond the  t i p  of the 

conical center body. 

(An extension 

It i s  not neces- 

3. Spl i t t e r  p l a t e s  of p rac t i ca l  s ize  a re  successful f o r  yaw up 

t o  6' with the unstarted i n l e t  windward. 

4. Pylon height has l i t t l e  e f f ec t  except a t  very low heights where 

it i s  necessary that there  be no gap between t h e  s p l i t t e r  p l a t e  and the 

wing. 
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(a) R i g h t  side view. 

(b) Left side view. 

Figure 3 . -  Wind-tunnel model. 
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(a) Sp l i t t e r  p la te  1. 

(b) S p l i t t e r  p la te  2. 

Figure 5.- Spl i t t e r  plates.  



(e) Spl i t t e r  plate  3. 

(a) Splitter p h t e  4. 

Figure 5.- Continued. 
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Figure 6. - Composite drawings of mounted sp l i t t e r  plates. 
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Figure 12.- Pressure traces, high 'pylon, J I  = Oo, = 0.72. 
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